12,009 research outputs found

    An analysis of the timing irregularities for 366 pulsars

    Full text link
    We provide an analysis of timing irregularities observed for 366 pulsars. Observations were obtained using the 76-m Lovell radio telescope at the Jodrell Bank Observatory over the past 36 years. These data sets have allowed us to carry out the first large-scale analysis of pulsar timing noise over time scales of > 10yr, with multiple observing frequencies and for a large sample of pulsars. Our sample includes both normal and recycled pulsars. The timing residuals for the pulsars with the smallest characteristic ages are shown to be dominated by the recovery from glitch events, whereas the timing irregularities seen for older pulsars are quasi-periodic. We emphasise that previous models that explained timing residuals as a low-frequency noise process are not consistent with observation.Comment: Accepted by MNRAS. High resolution images available from the article on AD

    Gaia astrometry for stars with too few observations - a Bayesian approach

    Full text link
    Gaia's astrometric solution aims to determine at least five parameters for each star, together with appropriate estimates of their uncertainties and correlations. This requires at least five distinct observations per star. In the early data reductions the number of observations may be insufficient for a five-parameter solution, and even after the full mission many stars will remain under-observed, including faint stars at the detection limit and transient objects. In such cases it is reasonable to determine only the two position parameters. Their formal uncertainties would however grossly underestimate the actual errors, due to the neglected parallax and proper motion. We aim to develop a recipe to calculate sensible formal uncertainties that can be used in all cases of under-observed stars. Prior information about the typical ranges of stellar parallaxes and proper motions is incorporated in the astrometric solution by means of Bayes' rule. Numerical simulations based on the Gaia Universe Model Snapshot (GUMS) are used to investigate how the prior influences the actual errors and formal uncertainties when different amounts of Gaia observations are available. We develop a criterion for the optimum choice of priors, apply it to a wide range of cases, and derive a global approximation of the optimum prior as a function of magnitude and galactic coordinates. The feasibility of the Bayesian approach is demonstrated through global astrometric solutions of simulated Gaia observations. With an appropriate prior it is possible to derive sensible positions with realistic error estimates for any number of available observations. Even though this recipe works also for well-observed stars it should not be used where a good five-parameter astrometric solution can be obtained without a prior. Parallaxes and proper motions from a solution using priors are always biased and should not be used.Comment: Revised version, accepted 21st of August 2015 for publication in A&
    • …
    corecore